Structural basis of transmembrane voltage sensing (470.1)
نویسندگان
چکیده
منابع مشابه
Structural and thermodynamic basis of proline-induced transmembrane complex stabilization
In membrane proteins, proline-mediated helix kinks are indispensable for the tight packing of transmembrane (TM) helices. However, kinks invariably affect numerous interhelical interactions, questioning the acceptance of proline substitutions and evolutionary origin of kinks. Here, we present the structural and thermodynamic basis of proline-induced integrin αIIbβ3 TM complex stabilization to u...
متن کاملVoltage sensor of Kv1.2: structural basis of electromechanical coupling.
Voltage-dependent ion channels contain voltage sensors that allow them to switch between nonconductive and conductive states over the narrow range of a few hundredths of a volt. We investigated the mechanism by which these channels sense cell membrane voltage by determining the x-ray crystal structure of a mammalian Shaker family potassium ion (K+) channel. The voltage-dependent K+ channel Kv1....
متن کاملStructural basis for activation of voltage-gated cation channels.
Because of their remarkable roles in electrical cell signaling, voltage-gated cation channels (VGCCs) have been the subject of intense investigations and debate for more than 50 years. Ultimately, the prospective implications of such studies have an impact on our understanding of the molecular properties of VGCCs involved in consciousness, anesthesia, and diseases, to mention a few. The followi...
متن کاملStructural Mechanisms of Voltage Sensing in G Protein-Coupled Receptors
G-protein-coupled receptors (GPCRs) form the largest superfamily of membrane proteins and one-third of all drug targets in humans. A number of recent studies have reported evidence for substantial voltage regulation of GPCRs. However, the structural basis of GPCR voltage sensing has remained enigmatic. Here, we present atomistic simulations on the δ-opioid and M2 muscarinic receptors, which sug...
متن کاملStructural basis for antiactivation in bacterial quorum sensing.
Bacteria can communicate via diffusible signal molecules they generate and release to coordinate their behavior in response to the environment. Signal molecule concentration is often proportional to bacterial population density, and when this reaches a critical concentration, reflecting a bacterial quorum, specific behaviors including virulence, symbiosis, and horizontal gene transfer are activ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The FASEB Journal
سال: 2014
ISSN: 0892-6638,1530-6860
DOI: 10.1096/fasebj.28.1_supplement.470.1